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SUMMARY 
Recent advances and progress towards the development of an effective Virtual-Pulse (VIP) explicit time 
integral methodology of computation for applicability to general multidimensional non-linear transi'ent 
thermal analysis of structures and materials is overviewed. The computational methodology is derived from 
new and different perspectives and the theoretical basis as well as the practical applicability to multidimen- 
sional thermal analysis situations are detailed. The VIP methodology inherits improved accuracy and 
superior stability characteristics in comparison to the traditional approaches customarily employed by 
thermal analysts. With the notion of providing techniques for high-speed computing environments and 
parallel architectures, the present approach is developed for such computations and also ideally suited for 
personal workstation computing environments. Results of the numerical test models for multidimensional 
problems validate the overall concepts for general applicability to thermal analysis situations. 
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INTRODUCTION 

The computational aspects of thermal heat transfer in engineering structures and materials is 
important since non-linear and/or non-uniform heating may have a significant effect on the 
performance characteristics and is of utmost concern in the development of advanced structural 
materials, component behaviour, and structural design. Several different techniques of numerical 
analysis of transient non-linearpinear thermal problems exist. Finite difference, finite element, 
finite volume, boundary element methods and the like are now quite familiar approaches for the 
space discretization. And, as such after the so-called semi-discretization process which leads to 
a system of first-order ordinary differential equations in time, numerous time discretization 
approaches exist and have been employed for evaluating the thermal response. This includes 
some form of finite difference approximations for the time derivatives which lead to direct time 
stepping methods; modal analysis which employ modal decomposition to decouple the governing 
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equations, and then typically involve a step-by-step time integration procedure to approximate 
the temperature field synthesized from the modes; hybrid transfinite element formulations which 
involve transform methods in conjunction with the semi-discrete equations and numerical 
inversion to yield temperature solutions at desired times of interest; approximations in space and 
time and the like.'-' 

With the advent of modern computing technology, numerous solution algorithms and strat- 
egies have been proposed for handling general non-linear transient thermal analysis problems. Of 
most of the existing methods, direct time stepping methods have been the most popular and 
widely advocated in most commercial codes. The so-called trapezoidal family of a-methods2 have 
indeed played a dominant role and well received both by the research community at large and 
code developers. Of these, only the implicit Crank-Nicolson method1' is second-order time 
accurate and unconditionally stable. Various other time stepping formulations have also been 
proposed for heat transfer problems to include the multi-step Lee's algorithm,' ' and those 
proposed by Zlamal' and Liniger.' Investigations employing related implicit and explicit 
solution techniques for thermal analysis of structures appear due to Adelman et a l l 4  More recent 
efforts due to Tamma and N a r n b ~ r u ' ~  describe developments in explicit approaches which 
maintain second-order accuracy; however, they are only conditionally stable. Unconditionally 
stable explicit methods have also been proposed such as the DuFort-Frankel scheme16 and 
Saul'yev's method; l 7  however, they suffer from the drawbacks of conditional consistency which 
implies convergence can be achieved if the time step At approaches zero much more rapidly than 
the mesh size h -, 0. The time step restriction is much severe for a desired accuracy in comparison 
to the unconditionally stable implicit Crank-Nicolson method. An extension of the Saul'yev's 
method in combination with finite elements for multidimentional problems appears by Trujillo.' * 

In comparison to direct time integration methods, modal analysis methods indeed exist in 
certain codes and have been mostly applied to linear problems and for long transient durations. 
However, their drawbacks stem from the fact that for transient non-linear analysis, there is 
a definite lack of effective and efficient use of such methods. In particular from the context of 
analogous dynamic structural problems, the need to recalculate eigenproblems frequently enough 
so that local mode superposition is permissible during a typical non-linear transient analysis, 
makes such approaches extremely cumbersome and inefficient. As a consequence, these methods 
have not been taken seriously for transient non-linear thermal problems. 

Unlike past approaches for general heat transfer computations, the present paper describes 
new and recent advances and trends towards providing an effective and accurate Virtual-Pulse 
(VIP) time integral method of computation. With the advent of high-speed computing technology 
and the importance of parallel computations for efficient use of computing architectures, a major 
motivation for the present developments is also to permit an explicit solution methodology with 
effective stability, accuracy and computational characteristics. Of subsequent interest are also 
thermal applications to personal workstation computing environments. The theoretical basis and 
the issues relevant to accuracy and stability with emphasis on simple single degree of freedom 
(SDOF) linear heat transfer models to illustrate merely the basic concepts of the VIP methodo- 
logy is described by Chen. et al." The theoretical basis, the formulation and the developments of 
the VIP methodology with applications to non-linear transient single degree of freedom models 
are introduced by Tamma et ~ 1 . ~ '  and, extensions of the VIP methodology with applications to 
finite element computations appeared more recently due to Mei et aL2' In the present paper, 
recent theoretical and computational advances in the development and applicability of an explicit 
VIP methodology of computation is described and numerical test cases of practical engineering 
importance relevant to multidimensional applications are presented to support the overall 
developments for general non-linear transient heat transfer problems. 
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GOVERNING THERMAL MODEL EQUATIONS 

Of general interest are the class of transient non-linear/linear thermal problems governed by 

aT 
p (T)c (T)  - - (kij Tj),i = Q in R 

at 

with appropriate boundary and initial conditions given by 

where ii is a unit vector normal to the surface S2 and pointing outward to this surface boundary. 

where qs is the surface heat flux, qh is the convective heat flux, and qr is the heat flux due to 
radiation acting on S2  of the boundary. T is the temperature field, k i j  is the thermal conductivity 
tensor, p is the density, c is the specific heat and Q is the internal heat source per unit volume. On 
the boundary S1, Tp is the prescribed temperature field. On boundary S 2 ,  the natural boundary 
conditions involve h which is the convection heat transfer coefficient with Th as the convective 
medium temperature, (r is the Stefan-Boltzmann constant, E is the surface emissitivity and Tr is 
the radiation medium temperature. In general, the thermophysical properties (k, p, c, h, E, etc.) are 
all temperature dependent. 

The initial conditions may be assumed as 

Finite element formulations: space discretization 

thermal model equations are typically of the form represented by 
Introducing the standard finite element procedure, the semi-discrete non-linear transient 

C(T, t)T + K(T)T = Q(t)  (24 

T(0) = Ti (2b) 

where 



526 K. K. TAMMA, Y. MEI, X. CHEN AND D. SHA 

r 

Q , = C  J CJET,~N,~S 
s; 

and C indicates summation over all elements in the physical domain, and all the thermophysical 
properties may be in general, dependent upon temperature. 

Time discretization: trapezoidal a-family 

the trapezoidal a-family of one-step methods given by 
The commonly employed solution algorithms for solving equations (2) have traditionally been 

where T" and T" are the representation of T(t,) and T(t,), respectively; Qn" = Q(t.+,) and At is 
the time step. Of these, only a = 0 5  which is the trapezoidal rule enables the method to be 
implicit, second-order accurate and unconditionally stable. The explicit solution method for 
CY = 0 is only conditionally stable and first-order accurate. 

VIRTUAL-PULSE (VIP) TIME INTEGRAL METHODOLOGY 

Unlike past approaches, the so-called Virtual-Pulse (VIP) time integral methodology of 
computation is developed from new and different perspectives and a fundamentally sound 
theoretical basis for general applications encompassing non-linear/linear thermal heat transfer 
computations. 

After the so-called semi-discretization process, the discretization in the time domain is achieved 
via a weighted residual process with the time weighting functions proposed via the present 
developments being uniquely selected so as to account for the physics involved, thereby, resulting 
in a general explicit time integral type methodology which possesses improved accuracy and 
stability characteristics (in comparison to the widely advocated traditional time stepping 
method), and has computationally attractive and effective features. The resultant weak form 
obtained via these developments appears in an integral form, and as a consequence, no finite 
difference approximations need to be involved. And, unlike direct time integration methods and 
mode superposition techniques, the proposed time integral methodology of computation capital- 
izes on the advantages of both via a modal transformation introduced to obtain primarily 
appropriate physically related weighting functions and then derives the resultant weak form from 
which an effective explicit computational methodology results. 
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Generalized formulations and developments 

Time discretization: VIP methodology of computation. The general transient non-linear semi- 
discretized thermal formulations can be typically represented as 

C(T)T + F(T) = Q ( t )  

T(0) = Ti 

where C E R" x R"; F, T, T and Q E R". N is the total number of degrees of freedom in the 
problem, C is the general temperature-dependent heat capacity matrix which is symmetric and 
positive-definite, F(T) is the representative conductivity matrix influenced by conduction/convec- 
tion/radiation (F(T) = K,(T)T + K,(T)T + K,(T)T), and Q is the load vector from the various 
contributions involving internal heat generation, surface heating, convection, radiation and the 
like (Q = QQ + Qqs + Qh + Qr) .  

consider an arbitary 
time moment t such that 

(6) 

Merely for the purpose of describing the development of the VIP methodology, consider C to 

(7) 

The theoretical developments follow next. In the time interval [tn, t,+ 

t = t ,  + y(t.+1 - t"), 0 < y < 1 

be comprised of CL (linear part) and CNL (non-linear part) as 

C = CL + CNL 

Introducing this into equation (5),  we have at any arbitrary y, 

CL'PY + FY = QY - C&LTY = RY eq 

The time discretization follows next via a unique weighted residual procedure, which, instead of 
employing standard polynomial functions in the time domain (which leads to finite difference 
approximations), seeks to incorporate the representative behaviour of the nature of the heat 
transfer problems as follows: 

It:' 6UT (CL 'PY + FY - R,Y,)dt = 0, tn, t ,  + 1 E [O, tend] (8) 

where tend is the time duration, 6UT are the appropriate weighting functions to be determined, 
and satisfy 

6U'(tn) = 0 (9) 

Integrating equation (8) by parts, we have 

or equivalently 

6UTCLTYI;:+' - lr+'(6UTCL - 6UTKL)TYdt 

where KL is the linear part of the conductance matrix. 
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Since the weighting functions are arbitary, we propose the choice of these for the time interval 
[t,, t , + l ]  as those from the linear solution of 

c L S U  - KL6U = CLX6(t - z), z E [t,, t n + l ]  (12) 

where 

X =  [X,, X , .  . .,X,,,], X € R N x R M  

6u E R~ x R~ 

and 6(t - z) is a Dirac delta function. 
The solution of equation (12) is given by 

6U = XZ(t - z), 

6U=O,  t < z  

t 2 z 

where 

Z(t - z) = diag [e',"' ~ ''1 
and I+, i = 1,2, . . . , rn are the eigenvalues of the linear problem given by 

( K L  - liCL)Xi = 0 

and Xi are the corresponding eigenvectors. 
Substituting the proposed weighting functions, (13) into ( l l ) ,  at z = t ,  we have 

f (T"+l)  = XTCLT" - Z(t,+I - t,)XTCLT"+' + Z(t - tn)XT(KLTY - Fy)dt I+' 
+ i y ' Z ( t  - t,)XTR&dt = 0 (15) 

or equivalently, introducing T = XT* to transform from a finite element basis to the modal basis 
together with the relation 

T Y  = (1 - y)T" + yT"+' (16) 

f(T*"+') = 0 (17) 

we have the general non-linear relationship described by equations (15) represented as 

MODIFIED NEWTON-RAPHSON PROCEDURE 

A modified Newton-Raphson iteration procedure is adopted for the solution of equation (17) as 
follows: 

J,,,=oAT,*$:' = - f;+l (W 
( 1 W  

(184 
An important feature of the present VIP methodology is the explicit nature of the resulting 

computational approach depicted by equation (1 8). The simplicity and effective nature of the 

T,*::' = T*n+l ,,, + AT:::' 

and 
T"+1 = XT*fl+' 
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proposed time integral methodology for general transient non-linear problem lies in the actual 
computation of J,,, = and f;' which results in an explicit computational procedure involving 
iterations. These are detailed next. 

Computation of Jacobian JmCO 

The Jacobian is obtained as 
The computational aspects associated with the evaluation of J,= are briefly outlined here. 

whereh(T*"+') is given by equation (17) [see also (15)]. 
Introducing the relations 

T" = (1 - y)T" + yT"+' 

t = 4l + Y k + l  - tfl) 
(20) 

(21) 

CiL = CNL(TP) (22) 

and 

where TP = (1 - B)T" + BT"+l and is a constant parameter within the range [0, 11 and is 
intended for improving the computational efficiency. It normally has the value of 0.5 based on 
numerical experiments. 

The computation for J,,,=O after algebraic manipulations simply results in a diagonal form 
given by 

Jm=O = diag( - e-'IA' CLii) (23) 

where CLii are the contribution of the diagonal components of the diagonalized linear capacitance 
matrix, XT CL X and X = [X,, Xz, . . . , X,,,], X E R" x R". 

Computation off,,, 

ments. Introducing the relations 
The computational aspects associated with the evaluation of - f,,, follow analogous develop- 

TY = (1 - y)T" + yT"+' (24) 

and 

FY = (1 - y)F" + yF"+' 

to account accurately for the calculation of the representative terms, leads to the following 
representations after algebraic manipulations as 

- f;+l = (Y, - Yz)XT(Q" - F") + YzXT(Q"+l - F:") - Y3XTC(Tb)(T:+' - T") (26a) 

where 

Y , = diag [ (eniAt - l)] 
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Y3 = diag __ (e'sA' - " Ai At 

Remarks 

1. In the above VIP time integration methodology of computation for general transient non- 
linear problems, it is noteworthy to point out that the computation of the linear eigenproblem 
is done only once for the entire transient duration. Furthermore, instead of solving an 
N equation system, solution of m equations (m < N )  will suffice; however, this may be problem 
dependent. 

2. The explicit nature of the methodology makes it an attractive tool for applications to 
high-speed computing environments and parallel computations. The approach is also suitable 
for applications on personal workstation computing environments. 

3. The proposed formulations yield improved accuracy and stability attributes in comparison to 
the generalized a-family of trapezoidal methods even for non-linear situations. Issues relevant 
to the notion of stability and accuracy from the context of linear situations are discussed 
subsequently. 

Reduction to transient linear problems 

It should be noted that for linear transient situations, equations (18) readily yield the solution 
response in one iteration. As a consequence, it can also be readily shown that for linear problems, 
the resulting formulations reduce to the explicit time stepping strategy (without any iterations) 
given by 

where 

R = (Y, - Y2)XTQn + Y 2 X T Q n + l  (27b) 
and, for constant thermophysical properties, all terms on the right-hand side of equation (27) are 
known. 

The representative nodal temperatures can now be readily obtained employing 

Stability and accuracy characteristics 

A brief overview of the stability and accuracy characteristics of the present VIP explicit 
methodology of computation is presented next as applied to linear transient heat transfer 
computations. 

Following the standard procedure of stability analysis, we consider the SDOF (single degree of 
freedom) homogeneous modal equation 

T + A T = O  (29) 
whose analytical solution of the amplification factor is e-'". For the explicit VIP time integral 
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Explicit 

Explicit 

Implicit 

Implicit 

Implicit 

methodology, the temporally discrete homogeneous modal equation can be readily obtained 
from equation (27) as 

I 

Unconditional 2* 

Conditional 1 

Unconditional 2 

Unconditional 1 

Unconditional 1 

Hence, 

Amplification factor A = e - (31) 
which is the same as the exact solution. For stability, the requirement is IAl < 1. Thus, it is 
obvious that the proposed explicit VIP time integral methodology is unconditionally stable. 
Comparative stability characteristics with the generalized trapezoidal a-family is depicted in 
Figure 1. 

The temporally discrete SDOF modal problem for the representation (equation (27)) can be 
rewritten as 

T*"+l = AT*" + L, (32) 

where Ln is the heat loading operator at time t = t,. An analysis of the local truncation error 
provides the accuracy with which the VIP methodology converges to the exact solution. 
Replacing T*"+' and T*" by the corresponding exact values, the local truncation error for the 

\ 
- 1 E  4 

X At 

I Method I Type I Stability I Accuracy I 
VIP 

Forward Euler 

Crank-Nicolson 

Galerkin 

Backward Euler 

* VIP method provides an exact solution in the case of a linear heat load. 

Figure 1. Comparative stability/accuracy of VIP versus trapezoidal family of methods 
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VIP methodology is governed by 

Ir(t,)l d 0 ( A t 3 )  (33) 

for a general heat loading situation. Hence, for these general situations, the VIP methodology is 
second-order accurate and the method is consistent. In view of the previously mentioned 
considerations, the notion of convergence via the present developments is thus automatically 
established. 

From the above-mentioned developments, the following remarks can be drawn for linear 
transient situations. 

Remarks 

The VIP methodology for linear problems is explicit (without any iterations) and uncondi- 
tionally stable with second-order accuracy and consistent; the temperature field is readily 
obtained at any desired time of interest without loss of accuracy for linear variation in heat 
loads. 
It is second-order accurate for an arbitrary heat load situation. 
The capacitance matrix C does not have to be physically lumped since the use of modal 
co-ordinates and M-orthogonality automatically decouples the resulting formulations. 
The methodology is directly self-starting. 

NUMERICAL TEST EXAMPLES 

Comparative numerical test models are evaluated in this section. All comparisons are purposely 
made with the implicit second-order accurate Crank-Nicolson method and the present sec- 

0 15.87 

0 127 
I 

r = 6.35 I A 

stay = 0.0 D 

T 
K = 0.015 
p = 0.750 
c = 75E-05 

1 - 0.0010 'T 

+ 5E-05 'T 

0.0 I 

r = 7.935 - 
Figure 2. Description of a nuclear fuel element model and numerical data 
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ond-order accurate VIP explicit method of computation. The Cray XMP was used for the 
computations. 

Test Case 1 

A linear and non-linear multidimensional transient problem with constant and temperature- 
dependent properties is described here. The general configuration of a nuclear fuel element, the 
finite element mesh used, and relevant material and boundary condition data are given in 
Figure 2. A constant heat flux is assumed at t = 0 on edge AB. Edge DE is assumed to be 
convecting. The problem is modelled using two-dimensional bilinear elements. 

Linear model. For the linear model, the comparative temperature histories (point A) and the 
corresponding errors are shown in Figures 3 and 4, respectively. The bench mark employed is the 
Crank-Nicolson with a very small time step At = 0.0025 s. The improved stability characteristics 
of the VIP in comparison to the Crank-Nicolson method for a given At = 1 s is shown in 

0 1 2 3 4 5 
time 

Figure 3. Comparative temperature histories for a given time step (At = 1 s): linear model 

E -10 4 0 

..I. 4 5 
time 1 -20 

Figure 4. Comparative errors (At = 1 s): linear model Note: Even when At = 5.0, VIP error is close to zero. 
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Figure 4. It should however be noted that for a given accuracy level (which is set to be 3 per cent), 
the Crank--Nicolson required a time step to be less than 0.005s for which the CPU was 16.454 
units in comparison to the VIP which needed a At = 5s (CPU = 1.133). It should however be 
noted that for this linear case the VIP could have used a much larger time step and still be within 
the set accuracy level. In Figure 5 we also purposely show the VIP for a very small At = 0.01 s to 
capture accurately the response in comparison to the implicit Crank-Nicolson which has 
a significantly larger error (approximately 11 per cent) at At = 0.01 s. 

Non-linear model. For the non-linear transient model, Figures 6 and 7 show the comparative 
temperature histories (point A) and errors for a given At = 1 s. The improved stability via the VIP 
is shown in Figure 7 for a At = 1 s. In Figure 8 we also show the improved accuracy for a small 
time step At = 002s. It should however be noted that for a given acceptable accuracy level (which 
is set to be 3 per cent), the Crank-Nicolson required a time step to be less than 0.005 s for which 

. ~ ~ r o . m @ . . . . . . . . . . .  

0 004 0.08 0 12 0 16 0.2 
-5 

t i m e  

Figure 5. Comparative results for accuracy: linear model 
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6 

5 

2 

1 

0 
0 1 2 3 4 5 

time 

Figure 6. Comparative temperature histories for a given time step (At = 1 s): non-linear model 
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0 

. 
0 

-5 

Figure 7. Comparative errors (At = 1 s): nonlinear model 
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-5 

Figure 8. Comparative results for accuracy (At = 0.02 s): nonlinear model 
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0 

Figure 9. VIP method at various large time step: non-linear model 
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Figure 10. Accuracy of VIP method at various large time steps: non-linear model 
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Figure 11. Description of plate problem with edge convection and radiation 
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the CPU was 42.52 in comparison to the VIP which employed a At = 2 5  s (for an error less than 
3 per cent and CPU of 1.746) and At = 5s (for error approximating 4 per cent and CPU of 1.585). 
Figures 9 and 10 show the plots of the VIP and the associated errors for At = 2.5 and 5s  
respectively. 

The above examples demonstrated the applicability of the VIP method to a linear/non-linear 
multidimensional model. The improved accuracy/stability and effectiveness of the method are 
clearly evident. 

Test Case 2 

This test case involves a rectangular plate with non-linear boundary conditions (convection 
and radiation) and the thermophysical properties are temperature dependent. Only a quarter of 
the plate and a description of the problem is shown in Figure 11. 

t 
0.8 

0.6 

1 0 . 4  

02 

0 

-0.2 
0 2 4 6 8 10 

time 

Figure 12. Comparative temperature histories showing superior time step advantage for a given accuracy 3 per cent 

3l CN (At=O.Ol) 

time 

Figure 13. Comparative errors showing that for a given accuracy level 3 per cent, the VIP permits a large time step 
advantage 
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-100;' ' ' I ' ' ' I ' ' ' ' ' ' I ' ' " 

lime 

Figure 14. Comparative errors showing that the VIP method can accurately capture the early transient with negligible 
error 

For a given accuracy level of 3 per cent, the Crank-Nicolson required a maximum time step of 
001 s in comparison to the VIP which employed 1 s. The comparative temperature histories and 
the associated errors for the centre of the plate are shown in Figures 12 and 13, respectively. The 
comparative errors showing the accuracy of the VIP even at a small At = 0.1 s to capture the 
early transient is shown in Figure 14. For assessing the effectiveness of the VIP method, a given 
accuracy level of 3 per cent was selected for which the comparative CPU times for the 
Crank-Nicolson versus the VIP method were 24.648 and 1.235 s, respectively. The overall 
effectiveness and accuracy of the VIP methodology is again evident from this multidimensional 
non-linear transient model. 

CONCLUDING REMARKS 

The paper outlined recent advances relevant to the theoretical and computational developments 
of a new Virtual-Pulse (VIP) explicit time integral methodology with emphasis on providing an 
effective generalized methodology of computation applicable to general transient thermal analy- 
sis of multidimensional non-linearflinear problems. Recent advances and progress towards 
providing an effective methodology with improved accuracy and stability characteristics were 
described via new and different perspectives and methodology of development. The numerical 
test models clearly validated the applicability of the VIP methodology to practical multidimen- 
sional thermal analysis situations. The choice of the number of modes selected may be problem 
dependent, and, the computation of the eigenproblem may play a role in certain cases; however, 
the VIP can be employed above a threshold time duration to offset the eigenproblem expense 
(part of this expense is offset by the larger time step permissible via the VIP methodology). When 
multiple load cases are involved, the VIP will indeed be an appropriate tool since the calculated 
eigenvalues/eigenvectors can be re-used for subsequent analyses. Unlike inertial problems in 
structural dynamics, where mode related approaches have indeed certain added advantages, 
typical thermal analysis problems belong more towards the propagation type and pose increased 
complexity. Nonetheless, the generalized explicit VIP time integral methodology described here is 
applicable to general linear/non-linear multidimensional thermal analysis problems. It should be 
clearly pointed out that although at a naive glance, the development of the methodology may 
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seem rather mathematically complex, in reality the explicit VIP methodology is fairly simple, 
straightforward and easy to implement. And, the approach possesses several computationally 
attractive and effective features which are also ideally suited for high-speed computing environ- 
ments and for parallel computations, and for personal workstation computing environments. 
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